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EXECUTIVE SUMMARY

TASK 6 SUPPLEMENTAL REPORT

COMPUTER SIMULATION STUDIES OF COUNTERMEASURE
SYSTEM EFFECTIVENESS

The primary purpose of Task 6 was to design and develop a test bed. To this end, activities
involved expanding the RORSIN4 software that was developed during Phase I of this program.
RORSIM simulates the combined effects of vehicle dynamics, a driver, an in-vehicle sensor,
environmental effects and an in-vehicle countermeasure system. The sensor measures the vehicle
position with respect to the roadway. This expanded version of RORSIM was needed in order to
acquire insight into the countermeasure characteristics that will be tested during Phase Il and
was used during Phase II to conduct Monte Carlo simulation studies. The primary focus of the
simulation studies was Counter Measure Systems effectiveness for Run-off-road crashes caused
by disengagement of the driver.
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1.0 Introduction

1.1 Background

The team of Carnegie Mellon University (CMU), Battelle, Calspan and the University of lowa was
awarded the contract DTNH22-93-R-07023, “Run-Off-Road Collision Avoidance Using IVHS
Countermeasures.” This contract is in support of the mission of the U.S. Department of Transportation’s
National Highway Traffic Safety Administration (DOT/NHTSA) to ensure safety of the U.S. highway
system. The overall objective of this contract, which was created as a three-phase, five-year program, is to
develop practical performance specifications for in-vehicle countermeasure systems to avoid single vehicle
roadway departure (SVRD) crashes, referred to as Run-Off-Road (ROR) events.

This preliminary draft report represents a summary of the project team’s efforts during Phase I of
this ROR project and was based on work that began during Phase I. During Phase III, this preliminary
report will be expanded into a complete report. The preliminary nature of this report is based on the
requirement to make the results of the Phase II work available as soon as possible so that it can be reflected
into planning for Phase II of this project. The details concerning the various project phases are discussed

below.
1.1.1 Motivation

The motivation for the ROR specification program is that ROR crashes represent the most serious
problem within the national crash population in terms of fatalities and injuries. For example, according to
the 1992 NASS GES file, which was assessed during Phase [ of this program, there were approximately
1.21 million police-reported crashes of this type for that year and accounted for 20.1 percent of the cases.
Additionally, more than 520,000 vehicle occupants were injured in ROR crashes in 1992 (i.e, 26.8 percent
of the injuries in the 1992 NASS GES data base for that year). According to the FARS database, there
were 14,031 fatalities for this crash type in the U.S. during 1992 and accounted for 41.5 percent of all
crash fatalities (33,846).

From the work accomplished during Phase I of the ROR project, several causal factors were

identified. These are: driver inattention (12.7 percent), vehicle speed (32 percent), evasive maneuver
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(15.7 percent), driver incapacitation (20.1 percent), loss of directional control on road surface (16.0
percent), and vehicle failure (3.6 percent).

1.1.2 Overall Program Scope and Objectives

Phase I of the program was conducted during the period from September 1993 to September 1995
with the scope of “Laying the Foundation.” Phase I consisted of the following four tasks:

Task 1: Establish ROR crash subtypes and causal factors by thoroughly analyzing the crash
problem.

Task 2: Establish functional goals of candidate countermeasures based on intervention
opportunities and mechanisms.

Task 3: Obtain basic operational, performance and functional data by performing hardware testing
of existing technologies.

Task 4: Develop preliminary performance specifications based on critical factors and models of
crash scenarios.

Phase II of this program, “Understanding the State-of-the-Art,” started in October of 1995 and will
conclude at the end of September 1996. It consists of two tasks:

Task 5: Conduct a technology state-of-the-art (SOA) review.
Task 6: Design and develop a test bed.

Phase III, “Test and Report;” will involve two tasks, which are construct/acquire a test bed (Task 7)

and conduct testing to support the development of performance specifications (Task 8).
1.1.3 Program Organization

The conduct of th:: ROR program is sequential in that the output of one task serves as the input for
the next. The purpose oi: Task 1 was to determine the circumstances associated with ROR crashes and the
reasons for them. The results of this work provided the basis of Task 2, where a taxonomy was developed
to classify ROR scenarios so that countermeasure functional goals could be defined. Task 3 applied the
results of the preceding task to formulate and test hardware, whose operating characteristics embodied
these functional goals. Using the previous tasks as a foundation, Task 4 involved the development of
mathematical models embedded in a computer simulation that included effects due to vehicle dynamics,
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the driver, sensors, environmental conditions and in-vehicle countermeasures, The results of
exercising the mathematical model were used to develop preliminary performance specifications
for countermeasure systems for the avoidance of ROR crashes. B
During Phase II, a technology state-of-art review (Task 5) was conducted regarding hardware
systems and subsystems that may be useful as ROR countermeasure systems. A thorough
technology assessment was performed earlier during Phase 1. However, a subsequent review was
needed to explore new developments in the intervening two years, especially regarding some of
the integrated collision avoidance prototype systems engineered in Europe. Several activities
were undertaken in Task 6, which concerned the design and development of a test bed. These
sub-tasks included: design of improved counter-measure algorithms, design and begin normative
driver data collection experiments and the development and application of improved
mathematical models. Battelle was responsible for the mathematical models and SOA review

work.

1.2 Task 6 Overview

The primary purpose of Task 6 is to design and develop a test bed. To this end, activities
involved expanding the RORSIN4 software that was developed during Phase | of this program.
RORSIM simulates the combined effects of vehicle dynamics, a driver, an in-vehicle sensor,
environmental effects and an in-vehicle countermeasure system. The sensor measures the
vehicle position with respect to the roadway. This expanded version of RORSIM was needed in
order to acquire insight into the countermeasure characteristics that will be tested during Phase
III and was used during Phase II to conduct Monte Carlo simulation studies.

The primary focus of the simulation studies was Counter Measure Systems effectiveness
(CMU) for ROR crashes caused by disengagement of the driver. For the purposes of the study,
driver disengagement is defined as no change to either the steering wheel position, throttle, or
brake settings from those at the last moment that the driver was engaged. Relatively short time
durations of disengagement reflect momentary driver inattentiveness (caused by changing the
radio station, looking in the glove box, etc.), while longer durations of disengagement represent
situations such as unconsciousness. The model also represents impairment due to drowsiness or
intoxication through the driver "aggressiveness of response” and "duration of driver
disengagement" parameters. The results of the simulation studies include the effect of these
types of disengagement and impairment.



In the Monte Carlo studies, RORSIM was run by varying several variables simultaneously to

determine the performance “envelope” of the in-vehicle countermeasures system (CMS) to avoid ROR

crashes. Variables for this simulation were:

1. Roadway radius of curvature

2. Lane width

3. Road friction

4. Shoulder friction

5. Shoulder rolling resistance

6. Vehicle speed

7. Driver steering reaction time

8. Driver lane keeping performance
9. Driver aggressiveness of response
10. Time of onset of driver disengagements
11. Duration of driver disengagements

12. TLC (time to line crossing) or TTD (time to trajectory divergence) threshold

13. TLC or TTD accuracy.
RORSIM was modified to accommodate appropriate distribution functions for each of these variables.

Three Monte Carlo studies were undertaken. The first study was performed to ensure that the range

of values selected for each of the eight variables yielded normal driving circumstances when RORSIM is
exercised (i.e., few, if any, ROR results occur). In the second study, the driver was disengaged at various
times and for different intervals of time in order to create ROR events. For the third Monte Carlo study,
the same set of trajectories from the second study was employed, but with a CMS that could warn the

disengaged driver, causing him to resume control of the vehicle.
1.3 Organization of this Report

The remainder of this report is organized as follows with regard to the expansion of RORSIM and
the conduct of the Monte Carlo simulation studies. Section 2 describes the analytical approach. The
results of the analysis are presented in Section 3. Conclusions are given in Section 4. Recommendations

are discussed in Section 5.
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2.0 Analysis Approach

In Phase I of the ROR program, an analytical approach was developed specifically for evaluating
CMS effectiveness in preventing ROR incidents over a wide range of driving scenarios. This approach
was implemented in the software package RORSIM, which was developed and delivered to NHTSA at the
end of Phase 1. RORSIM is a menu-driven time-domain simulation program that predicts
driver/vehicle/CMS dynamic interaction.

To meet the need for the ability to evaluate large numbers of driving scenarios and the influence
variations in several vehicle, driver and CMS parameters, the analytical approach was expanded in
Phase II, resulting in a more powerful and flexible version of RORSIM. The Phase II analytical approach
is described in this section. Details of RORSIM are provided in the Phase 1/ Task 4 report, and in
Appendix A of this report.

2.1 Analytical Method

The analytical model has three primary elements. These are:

1. A vehicle dynamics model,

2. A driver model, and

3. A CMS model.

A time domain simulation approach was adopted for the study. A lumped parameter model of the
driver/vehiclé/CMS system was used. A time-domain model was selected because the inherent
nonlinearities of the vehicle and driver would be extremely difficult to model in the frequency domain.

In addition to representation of the dynamics of vehicle motion, the model must also capture the
realistic dynamic interactions of vehicle-road, driver-vehicle, and CMS-driver interfaces. An explicit
driver model was incluc}ed that models the delays due to driver reaction times to braking and steering
commands. The model captures the driver’s nominal lane-keeping behavior and behavior in response to
warnings issued by a CMS. Driver inaction can be simulated using this model. The driver model takes
into account the different delays associated with the different response modes of a human driver. The
CMS includes a sensor system that acquires the data required by the decision module of the system. The
decision module then uses this data with available vehicle state information to determine whether the

driver requires a warning.



Several CMS methodologies have been proposed for studying ROR events. A detailed description
of these methods and their benefits was included in the Task 4, Phase I report [Pape et. al., 1995]. The
methods model three types of warning systems:

1. A longitudinal system for warning of excessive speed when approaching a curve.
2. Alateral system for warning of lane departure danger based on the Time to Trajectory
Divergence - (TTD) algorithm.
3. A lateral system for warning of lane departure danger based on the Time to Line Crossing -
(TLC) algorithm.
In this phase, only one CMS, TLC, was studied. The methodology developed could as easily be
applied to other CMS methodologies.
Each simulation run corresponds to one combination of input parameters. In order to generate
enough data to statistically characterize the CMS better, the model developed in Phase I studies has been

modified to automatically execute simulation studies using Monte Carlo techniques.

2.2 RORSIM

RORSIM is an enhancement to VDANL (Vehicle Dynamic Analysis, Non-Linear), which is a
general-purpose rubber-tired vehicle simulation program developed for NHTSA by Systems Technology,
Inc. in Hawthome, California [Allen et.al., 1992]. VDANL provides the basic vehicle dynamics model for
the simulation as well as the closed-loop driver model. VDANL includes a 17-degree-of-freedom model of
a general vehicle. The nonlinear differential equations of motion are integrated numerically by VDANL.
The project team has written enhancements to VDANL for use in evaluating ROR countermeasure
systems. Capabilities have been édded to simulate some of the driver’s actions (and inactions), model the
performance of various proposed countermeasure systems, and provide representative roadways.

The model is deterministic in the sense that almost every parameter, including the moment when the
driver becomes inattentive, is fixed before a simulation begins. The only place where pseudo random
numbers are used is in the lateral disturbance function for modeling driver lane keeping behavior.

The RORSIM p&ckage can simulate a complete scenario: a situation develops, it is sensed by the
CMS, the driver responds to the warning and regains safe control of the vehicle. When applied like this,
RORSIM is useful for demonstrating that a CMS can successfully prevent a ROR crash under the
particular circumstances modeled.

The scope of the RORSIM simulation studies under Phase II was to conduct extensive

parameter studies using a Monte Carlo like approach in an effort to provide a more comprehensive
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characterization of the effectiveness of CMS schemes in incipient ROR events. The goal was to
demonstrate the effectiveness of one or more proposed countermeasure systems in preventing ROR crashes
in a variety of circumstances. A more fundamental objective was to develop and exercise a methodology
for evaluating the effectiveness of a proposed countermeasure system.

To implement this approach, the simulation program RORSIM was expanded in the following

manner:

s Upgraded Vehicle Dynamics Model - The new RORSIM model is based on the latest version
of VDANL, 5.02.

=  New RORSIM Capabilities - an improved driver model, algorithms for generating CMS
effectiveness estimates. '

1

s Multiple Simulation Runs - The software was modified so that it could execute multiple runs
autonomously. A module called RORMCRUN generates multiple simulation runs.

= Input files generation - A statistical package, RORSTAT, has been developed to automatically
generate input files for Monte Carlo Runs.
Figure 2.1 shows a block diagram of the RORSIM package. Details of the above modifications to
RORSIM are provided in Appendix A.

2.3 Latin Hypercube Approach

The analytical study involved a statistical approach in which all the key parameters were varied
simultaneously according to a scheme that ensured good coverage of the range and distribution of each
parameter value. This scheme, known as the “Latin hypercube” approach [Stein, 1987 and McKay et.al.,

1979, is essentially similar to but more efficient than a pure Monte Carlo approach.

2.3.1 Theory and Use of the Latin Hypercube Method
>
Latin hypercube sampling is a Monte Carlo simulation procedure that provides an appealing
alternative to generating independent and identically distributed random vectors. Latin hypercube
sampling generally produces estimates with a lower variance than simple random sampling of input
vectors. Roughly speaking, Latin hypercube sampling stratifies each marginal distribution of the input

vector as much as possible but otherwise picks the vectors randomly.
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In Phase II studies, approximately six hundred random input vectors, e.g., values for vehicle speed,
lane keeping performance amplitude, driver reaction time etc., were generated using a series of Latin
hypercube samples. Three Latin hypercube samples of (nearly) equal size were produced for each road
curvature. The entire set of simulation input vectors consisted of twenty-seven Latin hypercube samples.

Applying Latin hypercube sampling structure to the random generation of input vectors optimized
the ability to estimate the effect of the independent input variables, such as vehicle speed and driver
reaction time, on simulation response variables without compromising estimates of overall effectiveness.
Division of the input vectors into separate Latin hypercubes for each road curvature optimized estimation
of input variable effects by road curvature. Division was also necessary because the distribution of vehicle
speed depended on the curvature. Use of three separate Latin hypercubes within each road curvature is

intended to provide improved estimates of variability.
2.3.2 Parameter Distributions .

A summary of the input parameters, corresponding distributions and the basis for selecting the
distributions is outlined in Table 2-1. The basis for selection of these distributions is reported test data,
existing literature, and standard highway design handbooks. A brief discussion on the selection of
distributions for some of the input parameters is in the next few paragraphs. ,

Vehicle Design. Vehicle parameters were selected to represent a 1994 Ford Taurus. These were
the same vehicle parameters that were used in the Phase I - Task 4 simulation studies.

Roadway Design. Nine different roadways (two-lane, crowned and with shoulders) were adopted
for the Phase II studies. These include a straight road and roads with left-hand and right-hand curvatures
of 250 ft, 500 ft, 1,000 ft and 2,000 ft. The curved road consisted of a straight section followed by a
curved section and finally followed by an infinitely long straight section. The curved section consists of a
curve entry spiral, a fixed radius of curvature arc corresponding to a quarter of a circle arc length and an
exit spiral. With the road curvature defined, the corresponding spiral lengths, crown angles and
superelevation angles have been determined using AASHTO guidelines.

~ For most of the analyses conducted for this study, a uniform distribution of the nine roadway
curvatures was used in order to estimate countermeasure performance over a wide range of circumstances.
However, the Task 1 analysis conducted for this program found that 34.3 percent of all driver inattention

and 62.5 percent of all driver impairment crashes occur on straight sections of road. Therefore, selected
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analyses were also conducted for this report to independently determine countermeasure performance on
straight (or nearly straight) road segments.

Vehicle Speed. The rated speeds for all the curves adopted in the Phase Tl study were obtained
from AASHTO guidelines. A constant speed of a vehicle throughout simulation is assumed. Vehicle
speeds for each road design were normally distributed with a standard distribution of 3 fps. The mean
speed on the tighter curves (250 and 500 ft radius) was 10 percent above the rated speed. The mean
speeds on the remaining curves were selected to provide reasonably uniform coverage over the entire range

of speeds. See Table 2-2.

Table 2-2. Road designs and corresponding speed distributions

Mean Speed, Extreme Speeds,

Road Radius of Super- Rated Speed, p p-30 p+30
Number | Curvature, ft | elevation mph  fps fps fps

1,2 250 0.10 30 44 48.4 394 574

34 500 0.08 40 59 64.9 55.9 739

56 1000 0.08 55 | s 80.0 71.0 189.0

7,8 2000 0.04 60 88 92.5 83.5 101.5

9 straight 0.02 65 95 102.0 93.0 111.0

(crown)

Driver Lane Keeping Performance. The software implementation of driver lane keeping
performance was based on data collected from actual driving tests by Carnegie Mellon University and by
Rockwell International [Rockwell 1995]. NHTSA’s SAVME and DASCAR programs, both currently in
progress, should provide further information on normal driving performance. The application of a varying
lateral wind gust forcing function produced normal driving vehicle lateral deviation results similar to that
obtained from the collected data. Hence, this method was adopted. Figure 2-2 shows the variance in
vehicle lateral deviations obtained from RORSIM simulations, compared to the variances in vehicle
position from actual driving data (CMU). The results in Figure 2-2 correspond to a fixed maximum lateral
wind gust velocity, Wy,,- This is the input to the lateral wind gust forcing function. A random number
generator ensures that the wind gust velocity varies uniformly between +/- W,y - The results obtained
from simulation have a close correspondence to actual driving data in the medium velocity range.

Figure 2-3 shows the variance in lane position with increasing maximum lateral wind gust velocity
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Variance of Vehicle Lateral Deviation
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Figure 2-2. Driver lane keeping behavior - variance of vehicle lateral deviation, simulated versus
actual.
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amplitude. Further analysis of the collected driving data indicates that the driver lane keeping performance
spectrum is similar to that of a random walk (1/f noise). Figure 2-4 is a plot of the RORSIM simulated
driver lane keeping frequency response compared to the 1/f noise spectrum.

Aggressiveness of Response. The driver aggressiveness of response is modeled by varying the
gain associated with the nominal driving response. A multiplicative factor on the gain models over-
correction and under-correction tendencies of drivers when subjected to an alarm.. A high multiplicative
factor corresponds to a driver who panics when an alarm is issued while a low value approximates a
sluggish (e.g., drowsy or intoxicated) driver. The multiplicative facfor is uniformly distributed between 0.2
and 2.5. The limits have been chosen based on pilot studies. The factor value exponentially returns to a
nominal value of 1. This ensures that the driver revei'ts to his normal driving tendencies in some time after
the alarm is issued. This parameter is invoked only if 2 warning is issued during the period of time in

which the driver is disengaged.

Time and Duration of Driver Disengagement. Since each curved roadway is preceded and
followed by a straight section, improper selection of times of onset of driver disengagement and duration
of disengagement could lead to a disproportionately large number of near roadway departures on straight
sections of the road. Since a straight road is already included, the statistics would be skewed. Also, itis
important to study possibilities of ROR on entry and exit spirals of curved sections of roadways. Hence,
for each curved roadway, assuming a constant speed of travel, time of entry of the vehicle into the entry
spiral and time of exit from the exit spiral of the curve were calculated. These calculations were made for
the (mean +/- 3 sigma) speeds selected for each curve. The range of values for duration of disengagement
were obtained from pilot studies. The earliest and latest times of onset of disengagement are then selected
such that the driver disengagemeht period is most likely to occur in the curved section of the road. This is
repeated for each roadway. The most representative set of earliest and latest driver disengagement onset
times are adopted for all the cases. The actual time of onset of disengagement is determined uniformly
between these two limits for each simulation run.

Figure 2-5isa piétorial representation of the parameter distributions used for the Monte Carlo cases

generated in Phase II stu:iies.
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Figure 2-5. Distributions used in Phase II “Monte Carlo” studies (In all plots, the ordinate is the
number of cases).

2-14



150

Q
0
o
05 10 15 20 0.5 1.5 2.5
Driver Reaction Delay, s Driver Aggressiveness Parameter
(=]
<
o
<
(=]
N o
N
° ° 1
4 6 8 12 16 2 4 6 8 12
Initiation of Disengagement, s Duration of Disengagement, s

Figure 2-5. (Continued) Distributions used in Phase I “Monte Carlo” studies (In all plots, the
ordinate is the number of cases). B _

2-15



60
40

20

20

40 60 80 100 0.10 0.20 0.30

Vehicle Speed, ft/s Driver Lane Keeping Parameter
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2.4 Effectiveness Measures

RORSIM, Version 2.0 can be used to simulate ROR events under a variety of input conditions. The
collected data is then used to obtain the performance measures for estimating effectiveness based on pre-
defined ROR criteria. In this section, the procedures for collecting the data, definition of ROR criteria, and

performance measures for evaluating the effectiveness of the CMS are discussed.
2.4.1 Data Collection

A study of the effectivehess of a proposed countermeasure system involves the generation of
degraded response modes of a vehicle (i.e. ROR events) and studying vehicle performance improvements
with and without a countermeasure system to warn the driver of potential degraded mode of operation. In
order to ensure that one can exactly account for the performance of the vehicle with and without a
countermeasure system under the same set of input conditions, three types of studies were performed.

Study 1: Development and verification of normal driving cases. A suite of normal driving cases
(as defined by the input parameter combinations) was selected. No driver disengagement was
imposed and the CMS was not active.

Study 2: Development of disengaged driver cases. The normal driving cases selected in Study 1
were subjected to a driver who is disengaged at varying onset times and durations. The CMS was
not active. The objective of the study was to generate potential ROR events from the normal
driving cases.

Study 3: Application of the CMS. The same disengaged driver cases (i.e., trajectories) from Study
2 were simulated again but this time with the CMS in effect. The objective of the study was to
evaluate the effectiveness of the CMS in preventing potential ROR events.

Table 2-3 shows the list of input parameters used in each of the studies.

When RORSIM is used in conjunction with RORMCRUN to generate several hundred simulation
runs, storing time histories of even a few variables becomes infeasible. Data collection must be
 streamlined to iﬁclude ofily absolutely necessary statistics from each simulation run.

In Study 1 it is sufficient to note the maximum excursion of the vehicle from the lane center, and
log the total number of departures of the vehicle from the lane in each run. However, in Studies 2 and 3, it
is essential to be able to differentiate between vehicle performance during the time that the driver is

disengaged from the vehicle performance corresponding to the period before the driver is disengaged.
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Table 2-3. Summary of key parameter characteristics for Monte Carlo Simulation studies

Effective | Effective | Effective | Selected as
in in - in Part of
Variable Study1 | Study2 | Study3 Study
_ 2 1. Roadway curvature yes yes yes 1
SE

= £ a

5 = © .

£ & & | 2. Lane width yes yes yes 1

= (not used in this

oy

-g phase)

;;, - 3. Road friction yes yes yes 1
é 2 | 4. Shoulder friction . yes yes yes 1
=9

-
=
5. Shoulder rolling yes yes yes o1
resistance
- 6. Vehicle speed yes yes yes 1
g g2
Ez
25
7. Lane-keeping yes yes yes 1

8 performance

»

g

° 8 8. Reaction (delay) no no yes 1

g @ E -time
w

= g S

5 | B3

E & ® 19. Aggressiveness of no no yes 1

) response
g 10. Initiation time of no yes yes 2
e g disengagement

-3 11. Durationof no yes yes 2
disengagement
8 12. CMS type and no no yes -3
2% threshold
Z 2
© E 13. CAS accuracy no no yes 3
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In the Phase II studies, three regions of interest are considered (R1, R2, R3) which are shown in
Figure 2-6. Region R1 corresponds to the period prior to driver disengagement. Region R2 is the driver
disengagement period, during which the driver is distracted or incapacitated and-hence does not steer the
vehicle. Region R3 extends from the time the driver is ‘re-engaged, resumes his steering (after a prescribed
delayed response time), to the end of log time, when the simulation is terminated. It is important to note
that the driver will start to steer at the end of the prescribed period of disengagem_ent that is specified for
each run, unless a warning is issued by the CMS (Study 3 only). The end of log time is defined with
respect to Study 2. It is defined as 5 seconds after the driver resumes steering in Study 2. The 5 seconds is
the time 'required for the transient performance, associated with the driver resuming steering, to die down.

If a warning is not issued and the prescribed period of disengagement expires, then the drivér is re-
~ engaged with the same driving behavior that he had prior to being disengaged. If a warning is issued
during disengagement, then the driver is re-engaged with his driving behavior modified by the “driver
aggressiveness” parameter.

In each region, the following information is noted:

1. The maximum front tire position of the vehicle (measured from the lane center).

2. Time at which maximum excursion occurs.

3. Whether a warning was issued.

4. The number of times a warning is issued.

5. The total time for which the warning signal is on.

Once these parameters are stored for each of the simulations, the ROR criteria and the CMS
performance criteria described in the next few paragraphs can be used to evaluate the effectiveness of the

CMS.
2.4.2 Run-Off-Road Criteria

A key issue in the development of an effective ROR countermeasure system that is not overly
restrictive or annoying is the establishment of limits of acceptable vehicle excursions. Perhaps thé least
ambiguous but most restgictive ROR criterion is any situation in which at least one tire crosses over the
lane edge (this is referred as a “lane excursion” in this study). This criterion, which for the purposes of this
study is defined as the “1-Tire ROR Criterion” implies that either there is no shoulder available or it is
unsafe for the vehicle to use any part of the shoulder during normal driving or for maneuvering to avoid a

potential accident.
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In practice, typical driving behavior sometimes involves excursions of the vehicle onto the shoulder
(e.g., “lane-cutting” during curving) without a resulting accident. Consequently, it may be more practical
to define a more “forgiving” ROR criterion. Thus, a second ROR c¢riterion was established for the
purposes of this study. This “2-Tire ROR Criterion” defines 2a ROR as an event in which both front tires
are in or beyond the shoulder. The “2-Tire ROR Criterion™ permits more vehicle lateral excursion
(equivalent to the wheel spacing on the front axle or about 5.125 feet for the vehicle used in this study)
before the result is considered to be an ROR event.

It is important to note that these ROR criteria are used only for classifying vehicle trajectories into
“crash” and “noncrash” events. The criteria used by the countermeasure for triggering a warning in this
study is independent of these ROR criteria, and is based solely on TLC, the time until one tire will cross
the lane boundary and enter the shoulder.

| In reality, roadways have a wide range of shoulder widths and surfaces, including no shoulder.
Thus, it may be necessary to adapt the CMS to changes in the conditions adjacent to the roadway lanes
(e.g., by adjusting the TLC based on previews of the shoulder width and identification of obstacles that

limit vehicle lateral excursion to less than the wheel spacing).
2.4.3 Performance Criteria

A CMS must be extremely reliable and at the same time must not be a nuisance to the driver. The
performance criteria for the CMS address these issues. Post processing of the data obtained from the
Monte Carlo simulation runs reveals a wealth of information. This information can be tested against the
performance criteria defined in this section to evaluate the overall effectiveness of the system.

Each pair of Study 2 and Study 3 simulations (one situation with and without CMS assistance) was
categorized as one of six outcomes to determine CMS effectiveness:

s Safe Correct Detection (SCD) - An alarm is triggered on a sequence where a lane excursion (2
situation in which one tire crosses the lane boundary onto the shoulder) happened in Study 2,
and no road departure subsequently happens in Study 3.

s Late Corrett Detection (LCD) - An alarm is triggered on a sequence where a lane excursion
happened in Study 2, and a road departure subsequently happens in Study 3.

»  Missed Detection (MD) - The systemn failed in Study 3 to issue a warning in a situation where a
road departure occurred in Study 2.

»  Correct Nondetection (CND) - The system didn’t issue a warning in Study 3 in a situation
where no road departure occurred in Study 2.
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Safe False Alarm (SFA) - The system issued a warning in Study 3 in a situation where no lane
excursion occurred in Study 2, and no road departure subsequently occurred.

Unsafe False Alarm (UFA) - The system issued a warning in Study 3 in a situation where no
lane excursion occurred in Study 2, and a road departure subsequently occurred (e.g., due to

driver startling).

Table24isa summary of the logic used to categorize the various possible outcomes of the simulation

studies.

The simulation cases were designed so that the driver could react to a wamning only during a
disengaged period. Thus, LCDs and UFAs were possible only during the disengaged period. Further,

MDs were possible only (1) if the CMS was not perfectly accurate or (2) if the TLC threshold was set to a
negative value.

Table 2-4. Definitions of the possible outcomes of a Study 3 simulation.

s | Lane Excursionin | - RORin - | Warming - | Subseqguent

Lase Study 2 ~Study2 1 Issued '} ~ROR “Resuit
1 Yes or No No No No Correct Nondetect
2 Yes or No No No Yes {Not Possible}
3 No No Yes No Safe False Alarm
4 No No Yes Yes Unsafe False Alarm
5 No Yes Yes or No Yes or No {Not Possible)
6 Yes Yes or No Yes No Safe Correct Detect
7 Yes Yes or No Yes Yes Late Correct Detect
g Yes Yes No Yes Missed Detect

The sum of safe and unsafe false alarms, and the sum of safe and late correct detections, are the
same for the two criteria. However, the proportions of safe events are influenced strongly by the choice of
criteria. Specifically, an “unsafe” or “late” event is defined as one front tire off the lane edge for the 1-Tire
ROR criteria. In contrast, an “nnsafe” or “late” event requires two front tires off the lane edge for the 2-
Tire ROR criterion.
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3.0 Results

In this section we present the results of the parameter studies using RORSIM. The results focus on
one of the/three methods of CMS that were evaluated in Phase I lane departure warning based on the time
to line crossing or TLC. The TLC-based method appeared nearly equivalent to the TTD (time to trajectory
divergence) method in preventing ROR events. TLC was selected for these Phase II studies because it is a
more widely employed and studied algorithm for lane departure warning. The third method, considered in
Phase I, was the curve warning method, and such “longitudinal” CMS were not studied in Phase II. The
results of the studies are presented in three parts, corresponding to the three studies comprising the

simulation studies.
3.1 Study 1: Normal Driving

The first step in studying CMS effectiveness was to establish a set of “normal” driving cases to use
as a baseline. These cases were to be “safe” in that the vehicles stayed within their lane in nearly all
circumstances, but were purposely chosen to be rather aggressive so that the CMS could be given an
opportunity to pérform.

The criterion to judge the outcome of a simulation case is the maximum tire excursion, as was

_ shown in Figure 2-6. The cumulative frequency distribution (CFD) of maximum tire excursion of
“normal” driving simulation cases is shown in Figure 3-1. The front track width of the modeled vehicle is
5.125 ft, so there are no values less than approximately 2.5 ft. For all of the studies, the lane width was
taken to be 12 ft. Thus, if the maximum tire position was less than 6 ft, then the vehicle remained within
its lane for the entire simulation. Of the 591 cases, only seven had tire excursions outside a 12-ft lane.
Therefore, the 591 cases were considered to be a reasonable representation of “normal” on-road driving
cases.

The influences are different at relatively slow driving on tight curves than at higher speeds on
straight roads. The incidence of maximum tire excursion is shown separately for each of the nine road
segments in Appendix C, Figures C-1 and C-2, and for selected road segments in Figures 3-2 and 3-3. As
expected, the simulation showed that negotiating a relatively tight curve at a high speed makes controlling

lane position more difficult. Consider Figure 3-2(a). The cluster of points tends to slope upward to the
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Figure 3-1. Study 1 results: Cumulative frequency dlstnbutlon (CFD) of maximum tire position
over the 591 cases of “normal’ driving.
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Figure 3-2. Study 1 results: distributions of maximum tire excursion (in feet) as a function of
vehicle speed for nine road segments - normal driving.
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right, indicating that vehicles that were traveling faster on this 250-ft-radius curve came closer to the edge
line. In contrast, the curve for the straight road (Figure 3-2(b)) has no perceptible dependence on vehicle
speed. As shown in Figure 3-3(b), the main influence on the vehicle’s maximuri tire position in normal
driving on a straight road is the driver lane keeping behavior.

Plots of minimum TLC versus maximum lateral excursion and vehicle speed are shown in
Figure 3-4 for the 591 “normal driving” cases comprising Study 1. The figures ilidicate that thereis a
strong decrease in TLC with increasing maximum lateral excursion, while TLC decreases only slightly
with increasing vehicle speed. Further, the scatter in the TLC minima decreases with increasing maximum
lateral excursion. TLC minima of zero indicate an ROR event, based on the criterion that one front tire
rides in the shoulder area (This has been defined as the “1-Tire ROR Criterion.”).

3.2 Study 2: Disengaged Driver Without a CMS

In Study 2, driver disengagement was prescribed for each of the 591 cases of normal driving
established in Study 1. The purpose of this activity was to dévelop a baseline set of disengaged driver
scenarios for which CMS effectiveness could be evaluated in Study 3. Each of the 591 cases from Study 1
was aésigned an onset time and a duration of the disengaged period. Figure 3-5 shows the distribution of
maximum tire excursion for the 591 cases of Study 2. As expected, driver disengagement caused a much
larger population of lateral excursions beyond the lane edge. This is also indicated in Figures 3-6 and 3-7,
which show plots of maximum lateral excursion versus vehicle speed and lane-keeping performance,
respectively, for each individual cése for selected roadway segments considered in the study. ‘A complete
set of plots for each of nine roadway segments is provided in Appendix C, Figures C-3 and C-4.

There wéte 50 cases where the maximum tire position was less than 6 ft from the lane center; the
vehicle stayed in its lane for the duration of the simulation and a ROR event did not occur. These cases
represent the “control” group, on whichlthe CMS was tested but for which it was not expected to generate
an alarm. There were 541 cases of lane excursions that met the “1-Tire ROR Criterion” (i.e., at least one
front tire was in or beyond the shoulder), and 450 cases that met the “2-Tire ROR Criterion” (i.e., bqth

front tires were in or beyond the shoulder). These results are summarized in the table shown below:
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Figure 3-5. Study 2 results: comparison of cumulative frequency distributions (CFDs) of maximum
lateral excursion - normal versus disengaged (“inattentive”) driving without a CMS.
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Table 3-1. Number of ROR events in normal and disengaged driving

Outcome Maximum Lateral .Excnrsion-— No. Cases
(y) Criteria Study 1 Study 2
Vehicle Stayed in Lane y<6ft 584 50
Only One Front Tire on Shoulder 6ft<y<11ft 7 91
Two Front Tires On/Beyond Shoulder y>11ft ’ 0 4350
Total 591 591

Plots of minimum TLC versus maximum lateral excursion and versus vehicle speed are shown in
Figure 3-8 for the Study 2 cases.

The characteristics of the 591 cases of disengaged driving scenarios were considered effective for
evaluating CMS performance in Study 3, because (a) they contained a strong cross-section of typical
driver, operating, and environmental characteristics, and (b) they included a population of ROR and non-
ROR cases, with which CMS effectiveness could be evaluated under conditions when a warning should be

issued, as well as when a warning should not be issued.

3.3 Study 3: Disengaged Driver With a CMS

The purpose of Study 3 was to determine whether vehicles equipped with a CMS would be
expected to have fewer collisions than with vehicles not equipped with a CMS. An associated issue was to
determine the extent to which CMS effectiveness is compromised by

®  Safe False Alarms (wamnings issued when there is no impending ROR event -- safety is not
affected but a high false alarm rate can be annoying and could decrease the sensitivity of the
driver to a warning),

= Missed Detections (no warning issued while the driver is disengaged and when there is an
impending ROR event), and

s Late Correct Detections and Unsafe False Alarms (warnings that were issued while the driver
is disengagéd and when there is or is not an impending ROR event, respectively, but caused
the driver tQ respond in a manner that resulted in a separate ROR event).

Each of the 591 ROR test cases of Study 2 was run with an operating CMS, and the characteristics of the
CMS were varied to evaluate the influence on its effectiveness. Five thresholds of the system were tested,
each with seven levels of error in the sensor, (including a zero CMS error case). In addition, an existing
passive system, shoulder grooves (“rumble strips” similar to those of the SNAP system used in

Pennsylvania), was tested as a comparison.
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Figure 3-8. Study 2 results: influence of maximum lateral excursion and vehicle speed on minimum
TLC during disengaged driving without a CMS.
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The results have been plotted a number of ways to study different trehds, but the basic question
underscoring the analysis is whether the vehicle in a particular simulation left the 12-ft lane, and if so, by

how much. For simplicity, cases with no error in the countermeasure’s sensor are considered first.

3.3.1 Influence of TLC Threshold

Cumulative Frequency Distributions (CFDs) of maximum lateral excursion are shown in
Figures 3-9(a) and (b) for disengaged driver cases without a CMS (Study 2 results) and with a CMS with
TLC thresholds set at -0.6 meters, 0.01, 0.6, 1.2 and 1.8 seconds. Figure 3.9(a) shows CFDs for all road
segments while Figure 3.9(b) shows CFDs for straight roads only.

A negative value of TLC is associated with a tire position that is on (or beyond) the shoulder. The
TLC metric of seconds tends to lose physical meaning for negative values. Consequently, a negative TLC
is defined as distance beyond the lane edge (in units of meters) when the tire has entered the shoulder.
Thus, the TLC threshold value of “-0.6” shown in the figures corresponds to a warning that is issued when
a tire is at least 0.6 meters past the lane edge.

As shown in Figure 3-9(a) and (b), the presence of the CMS generally reduces the population of
large vehicle lateral excursions. For example, in Figure 3.9(a) about 80\ percent of the maximum lateral
excursions for the cases without a CMS were above 10 feet. In contrast, less than 10 percent of the cases
were above 10 feet using a CMS with a TLC threshold of 1.8 seconds, and the percentage of these cases
increased with decreasing TLC threshold to the point where there was only a small improvement for a TLC
threshold of -0.6. A

The results in Figures 3-9(a) and (b) indicate that for successively higher TLC thresholds, the
curves diverge from the “No CMS?” case at lower values of maximum lateral excursion. This trend
indicates that with higher thresholds, the driver is warned earlier in the roadway departure sequence,
resulting in a greater number of successful corrections for any given lateral excursion. Further, the slopes
of the CMS curves at the. points where they diverge from the “No CMS” curve increase with increasing
TLC threshold. This may be due to the increased ability of a driver to successfully correct his path with
earlier warnings. With l;te warnings (low TLC thresholds), the driver may already be in a dangerous
situation (past a “point of no return”) and may be unable to succ¢ssfully correct the vehicle. This impliés
that the “early warning” capability of vehicle-based electronic CMS, such as the type evaluated in this
study, offers a distinct performance advantage over an infrastructure-based system like SNAP, which

provides a ROR warning only after the ROR event is underway. A comparison of the CFDs in
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Figure 3-9(a). Study 3 results: CFDs of maximum lateral tire excursion for disengaged driving
with a CMS set at several TLC threshold levels for all roads.
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Figure 3-9(b). Study 3 results: CFDs of maximum lateral tire excursion for disengaged dﬁﬁng
with a CMS set at several TLC threshold levels for straight roads.
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Figures 3.9(a) and (b) shows that vehicle lateral excursions are lower and CMS performance is better on
straight roads.

These results provide a good indication of the potential of 2 CMS in reducing ROR events by
limiting vehicle lateral excursions. Further analyses of the data identified a few cases where the excursions
were greater with a CMS than without it. These cases were evaluated in greater detail and determined to
be associated with the driver’s response to being warned, which resulted in unsafe maneuvering of the
vehicle.

The curves presented in Figures 3-10 and 3-11 shdw the fundamental relationships between the six
basic measures of CMS effectiveness for the 2-Tire ROR Criterion. For these curves, the sum of all false
alarms and correct nondetections equals the total nut;lber of non-ROR cases generated in Study 2, while
the sum of all correct detections and missed detections equal the total number of ROR cases generated in
Study 2. As shown in the figures, the CMS with no measurement eror and a positive TLC threshold will
always detect an incipient ROR event and have no missed detections. Further, a perfectly accurate CMS
will have missed detections only for negative TLC threshold levels greater than the maximum allowable
lateral excursion (i.e., 11 feet for this study). With increasing TLC threshold level, the driver is provided

with more time to react to the warning, but the number of false alarms increases.

3.3.2 Influence of ROR Criterion

Both the “1-Tire” and “2-Tire” ROR Criteria were applied to the Study 2 and 3 results to evaluate
CMS effectiveness. The results of this exercise are summarized in Figures 3-12 and 3-13.

In Figure 3-12, the percentége of cases with maximum lateral excursions exceeding 6 ft (1-Tire
ROR Criterion) and 11 ft (2-Tire ROR Criterion) are plotted versus TLC threshold. For comparison, the

fraction of cases that exceeded these levels for disengaged drivers without a CMS (i.e., Study 2 results) are
shown. These data are shown for straight and curved roads in Figure 3-13. As expected, the benefits of a
CMS are more obvious with straight roads regardless of the type of ROR criterion used.

These results unply that the perceived effectiveness of a CMS depends strongly on how a ROR
event is defined. For example, if the driver is allowed to use the shoulder to maneuver the vehicle to avoid
a ROR event, then the CMS can be credited with many more ROR preventions compared to a policy of
defining any instance of a tire on the shoulder as a ROR event. The influence of using the available
shoulder on the ability to prevent ROR events is shown in Figure 3.14. As indicated, the reduction in
ROR events increases dramatically on roads with wider shoulders. For example, with a TLC threshold set
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Figure 3-10. Study 3 results: influence of TLC threshold on CMS performance - comparison of
safe and late correct detections, safe and unsafe alarms, and missed detections, based on the 2-Tire
ROR Criterion.
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Figure 3-11. Study 3 results: influence of TLC threshold on CMS performance - comparison of
safe and unsafe false alarms, and correct nondetections based on the 2-Tire ROR Criterion.
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Influence of TLC Threshold
on Percentage of Roadway Departures
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Figure 3-12. Study 3 results: influence of TLC threshold on CMS performance - comparison of
roadway departures based on 1-Tire and 2-Tire ROR Criteria.

3-18



Influence of TLC Threshold
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Figure 3-13. Study 3 fesults: influence of TLC threshold on CMS performance - comparison of
roadway departures on straight and curved roads, based on 1-Tire and 2-Tire ROR Ciriteria.
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Influence of Shoulder Width
on RORs Prevented
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Figure 3-14. Study 3 results: influence of TLC threshold on CMS performance - influence of
shoulder width on ROR events prevented.
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of 1.2 sec, the percentage of RORs prevented on roads with no shoulder, a 5-ft shoulder and 13-ft shoulder
were about 8, 80 and 98 percent, respectively. These results suggest that a higher TLC threshold is needed
on roads with narrow shoulders, and that it may be desirable to have a variable TLC threshold in a CMS.
Additional results from Study 3, showing the influence of roadway curv;tures, are presented in
Figures 3-15 and 3-16. In Figure 3-13, the percentage of cases involving safe correct detects and false
aJarmsA are plotted as a function of TLC threshold. In Figure 3-16, the percentage ROR events prevented is
plotted as a function of TLC threshold. As indicated in these figures, the percentage of safe correct detects
and RORs prevented increase monotonically with increasing TLC threshold, on both straight roads and
curves. Further, CMS performance on straight roads is noticeably better than that on curves. However, this
beneficial trend of in;reasing correct detects is offsét by an increase in the percentage of false alarms (and
corresponding decrease in correct nondetects). These results stress the need for careful optimization of a
CMS to provide the best combination of high correct detections, tolerable false alarm rates and minimal

missed detections.
3.3.3 Performance Comparison: CMS versus SNAP

Simulations were made to compare CMS performance with a representation of the Sonic Nap Alert
Pattern (SNAP), an existing countermeasure system for which actual effectiveness data are available. The
Sonic Nap Alert Pattern (SNAP) was developed and implemented by the Pennsylvania Turnpike
Commission (PTC). It consists of a series of grooves cut into the shoulder of the turnpike, about 3 inches
outside the white edge line. If an inattentive (or napping) driver drifts outside the lane, the grooves make a
loud sound (about 80 dB ina sedan at 60 mph), which quickly restores the driver’s attention. SNAP was
initially deployed in 31 miles of roadway where the incidence of ROR crashes was relatively high--0.51
per month. During a trial period of 1 to 3 years, the ROR crash rate was only 0.16 per month. SNAP
helped reduce the ROR rate by 70 percent. Comments from drivers have been favorable, and the pattern is
being deployed along the entire Turnpike. Other states and authorities are adopting variations of the idea
as well. |

In practice, SNAP is used on shoulders that are about 13 ft wide. Thus, to provide a meaningful
comparison of CMS and SNAP effictiveness, a ROR was defined as an excursion of greater than 13 feet
past the lane edge.
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Figure 3-15. Study 3 results: influence of TLC threshold on CMS performance - comparison of
safe and late correct detections, and false alarms on straight and curved roads.
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Influence of TLC Threshold
on ROR Events Prevented
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Figure 3-16. Study 3 results: effect of TLC threshold on percentage of ROR events prevented on
different roadway segments. ,
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Referring back to Figure 3-14, RORSIM predicts that SNAP would prevent about 65 percent of the
ROR events in Study 2. This performance is similar to the 70 percent ROR reduction rate reported by the
PTC, and thus is a good indication of the validity of RORSIM.

The results of the simulation studies comparing the CMS with SNAP are summarized in
Figures 3-17 and 3-18. In Figure 3-17, CFDs of maximum lateral excursion are shown for no CMS, for a
CMS with different TLC threshold levels, and for the SNAP system for all the roads considered in the
study. Figure 3-18 compares the performance of the TLC based CMS with a SNAP system for straight
roads only. As indicated in the figures, both the SNAP system and all configurations of the CMS provide
substantial reductions in both maximum lateral excursions and ROR events. Further, as expected, the
CMS performance exceeds that of the SNAP for TLC threshold values above zero. This is because the
SNAP is equivalent to a perfectly accurate CMS system with an effective TLC threshold of slightly less
than zero. Consequently, the CMS performance is not as good as that of the SNAP for TLC threshold
values below the effective value for SNAP (-3 inches or -0.076 m for this study.)

Since SNAP has shown to improve highway safety by the reduction in recorded ROR events, by
implication a properly configured CMS of the type modeled in these studies potennally can further
improve ROR safety over that obtainable with SNAP.

3.3.4 Influence of CMS Accuracy

Several thousand simulations were run to evaluate the influence of CMS accuracy on CMS
effectiveness. For this evaluation, the inattentive driver cases were run for each of six values of bias error
in the lane position measurement (+/- 0.25 ft, +/- 0.50 ft and +/- 1 ft). This error would be manifested in
an error between the calculated and actual values of TL.C, because lane position is a dominant term in the
TLC equation.

The results of t.‘rns evaluation are summarized in Figure 3-19, which shows CFD plots of maximum
lane excursion for the CMS with and without bias error, as well as for the case of no CMS.

The most sxgmﬁcant result of these error studies is that the types of bias errors considered have a
relatively minor effect on CMS effectiveness. For example, the CFD plots in Figure 3-19 indicate very
little change with bias error for a TLC threshold of 1.2. Thus, lane position sensors with errors in the

range of +/- 6 inches probably would be adequate for use in a CMS.
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Figure 3-17. CFDs of maximum lateral excursion: comparison of electronic CMS with SNAP for
- all road types.
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Figure 3-18. CFDs of maximum lateral excursion: comparison of electronic CMS with SNAP for
straight roads. :
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Figure 3-19. Study 3 results: influence of CMS error on CMS performance - CFDs of maximum
lateral excursion for different lane position measurement bias errors.
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4.0 Summary

Two of the most important measures of overall CMS effectiveness are the number of ROR events
prevented and the false alarm rate: a perfect CMS would prevent all ROR events and issue no false
alarms. As indicated by the results of the simulation study, there exists a tradeoff between ROR
prevention and false alarm rate for the type of electronic CMS evaluated. This tradeoff is evident in the
summary data provided in Figures 4-1 to 4-3 for straight roads, curved roads and all roads, respectively,
using the 2-Tire ROR Criterion'.

As shown in the figures, the CMS performance on straight roads is significantly better than that on
curved roads from the standpoint of ROR events prevented, but is slightly worse from the standpoint of
false alarm rates. For example, for a TLC threshold of 0.6 sec, about 78 percent of ROR events were
prevented on straight roads, compared to about 55 percent on curved roads, with no false alarms issued for
both road types. In contrast, for a TLC threshold of 1.2 sec, nearly 100 percent of ROR events were
prevénted on straight roads, compared to about 82 percent on curved roads; however, the false alarm rate
on straight roads was about 21 percent, compared to about 13 percent on curves.

The data for all roads (Figure 4-3) are similar to those for curved roads (Figure 4-2), primarily
because a disproportionately large percentage of curved roads (about 89 percent) was used in the -
distribution of roadway curvatures. ‘

The data shown in these figures illustrate the strong potential for reducing ROR accidents by

implementing an electronic in-vehicle CMS.

! In these figures, false alarm rate was determined by a method other than that used in the results reported
previously. The minimum TLC was calculated during each of the 541 normat driving (Study 1) simulation cases
where the vehicle stayed in the lane, and a case where the TLC minimum fell below a specified TLC threshold
value was defined as a false alarm. Using the 541 Study 1 cases rather than the non-ROR cases from Study 2
provides a larger sample size from which to calculate false alarm rate. However, a comparison of Figures 4-1 to
4-3 with Figures 3-10 to 3-11 indicates that the false alarm rates are similar for both methods.
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Figure 4-1. Summary of simulation studies: CMS effectiveness on straight roads using 2-Tire ROR

Criterion.
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Figure 4-2. Summary of simulation studies: CMS effectiveness on curves using 2-Tire ROR

Criterion.
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Figure 4-3. Summary of simulation studies: CMS effectiveness on all roadway types using 2-Tire
ROR Criterion.
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5.0 Conclusions

The following conclusions have been drawn from the results of the foregoing simulation studies:

1. RORSIM has been demonstrated to be a valuable analytical tool for evaluating CMS
performance over a wide range of driving conditions and driver characteristics. The
enhancements developed in this phase of the ROR program enable RORSIM to be used
conveniently to implement Monte Carlo-type techniques to generate literally thousands of
driving scenarios per day on a desktop computer. Thus, it is possible to perform an
effectiveness assessment of a CMS in a few days. This capability is a powerful supplement
to over-the-road and test track testing, which can be time-consuming, costly, and limited in
the range of conditions that can be evaluated.

2. The CMS configuration evaluated in the studies showed considerable potential for
effectively reducing a vehicle's probability of a ROR crash over a vehicle not equipped with
a CMS as well as over a passive roadside system such as shoulder rumble strips ("SNAP").

3.  There exist inherent trade-offs between correct ROR detection rate, false alarm rate, and
non-detection rate. An effective CMS must account for these trade-offs and should be
optimized to provide the best overall performance. The studies presented in this report
have provided insight into these CMS performance issues and helped to quantify some of
the trade-offs. These simulations suggest that under the conditions tested, a TLC warmning
threshold in the vicinity of 0.6 seconds best satisfies the goal of maximizing effectiveness
while keeping the false alarm rate near zero. These results are supported by in-vehicle
experiments conducted during Phase I of this program.

4. A potential safety issue is the nature of an disengaged driver's response to a ROR warning.
Depending on the "aggressiveness" of the driver in his response (i.e., the warning "startle
factor"), a wamning actually could cause a subsequent ROR event.

5.  The TLC method for warning of incipient ROR conditions is effective and is relatively
insensitive to errprs in lane position measurement (bias) error.

6. The effectivenes8 of a CMS depends strongly on the amount of clear shoulder available for
maneuvering. Therefore, the reported effectiveness depends on the criterion used to define
a ROR event. The results of this study indicate that the CMS is much more successful (on
the basis of crash prevented) if instances of the vehicle riding partly on the shoulder are not
considered as a ROR event. That is, if the driver is allowed to use some of the shoulder to
maneuver the vehicle back into the lane, the success of the CMS is quite good. This
strongly suggests the need for information on available shoulder widths, the presence of
culverts and overpasses, etc., in order to ensure that proper ROR warnings are issued to the
driver on a sitespecific basis, as was suggested in the Preliminary Performance
Specifications of the Phase 1, Task 4 report.
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6.0 Recommendations

The following recommendations are made based on the results of this study:

1. The results of the simulations in this study should be analyzed in greater detail to determine the
effect of the various input parameters on the CMS effectiveness. Important questions that
could be answered include, “Does the CMS performance differ between wet and dry
conditions?” and “Should the threshold be varied according to the vehicle’s current speed?”
Improvements to the CMS can be proposed when the factors limiting the recovery maneuver
have been identified.

2. Further simulation studies should be performed to evaluate the influence of several additional
factors on CMS performance. These include vehicle type, and a wider range of driver behavior
also should be employed. This should include driver “curve-cutting” behavior, avoidance
maneuvers involving braking and steering. '

3.  Another focus of additional studies should be on differences in driver responsiveness
(aggressiveness) before and after the disengagement period in situations where no CMS
warning has been issued. This assumption may have biased the results to indicate only
marginal improvements in ROR performance with SNAP and low TLC threshold values,
because for the “NO CMS” (Study 2) cases, the driver “calmly” regained attentiveness. Data
evaluated in Tasks 1 and 2 of this program indicate that a driver may be more likely to under-
react when suddenly regaining attention. Thus, additional work should involve characterizing
the changes in driver responsiveness before and after becoming disengaged, and evaluating the
influence of these characteristics on the ability to maneuver to avoid ROR events.

4. More human factors information is necessary concerning how the driver and CMS will perform
together. Specifically, studies should be performed to determine the range of driver reactions
to a warning and how warnings might be “tuned out” if false alarms become too persistent.
Controlled simulator studies would complement research with naive drivers in actual vehicles.

5. Further studies should be performed to explore the use of other detection schemes, including
combinations of the three CMS methodologies developed in Phase I of this project. The ability
of the expanded model to quickly simulate thousands of cases will permit researchers to
identify clastes of situations where one type of countermeasure system is preferable to another.

6. Additional simulation studies also should focus on different roadway types (e.g., multi-lane
highways) and use a distribution of roadway curvatures that are more representative of U.S.
roadways (e.g., a greater percentage of straight and nearly straight segments). Further, the
roadway models should be modified to represent as realistically as possible the friction and
geometry characteristics of the shoulders and off-road regions.
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Appendix A: RORSIM Version 2.0

The scope of the RORSIM simulation studies under Phase II is to conduct extensive parameter
studies using a Monte Carlo (MC) approach in an effort to provide a more comprehensive characterization
of the effectiveness of collision avoidance systems (CAS) in incipient ROR events. The goal is to
demonstrate the effectiveness of one or more proposed countermeasure systems in preventing ROR crashes
in a variety of circumstances. A more fundamental objective is to develop and exercise a methodology for
evaluating the effectiveness of a proposed countermeasure system.

To implement this approach, the simulation program RORSIM (Version 1.0), which was

developed in Phase I of this project, was modified and expanded in the following manner:
A.1 Upgraded Vehicle Dynamics Model

RORSIM is an enhancement of the VDANL program, which is a commercial, general purpose,
rubber tired vehicle simulation program owned by Systems Technology, Inc. RORSIM, Version 2.0 is
based on the latest version of VDANL - Version 5.02. This version incorporates improved tire force

estimation methods as well as advanced open loop speed control features.
A.2 New RORSIM Capabilities

Several new features have been introduced in Version 2.0. Two new features have been added to
extend the driver model developed for Phase I studies, namely, driver lane keeping performance and driver
aggressiveness of response to an alarm. In order to reduce the amount of post-processing required to
generate counter measure system effectiveness estimates, algorithms were added to determine
countermeasure system performance indicators such as number of correct detections, missed detections and

false alarms issued by the CAS.
Driver Lane Keeping Performance. Human drivers usually do not control the vehicle to track
the center of the lane perfectly and vehicle lane keeping behavior is characterized by a driver specific

“meandering” or weaving tendency. In RORSIM (Version 2.0) a lateral wind gust forcing function was
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created to generate various levels of vehicle lane weaving or “meandering,” which is associated with driver
lane-keeping behavior. For ROR studies, the magnitude of lateral wind gust is provided as an input
parameter that can be varied depending on the type of driver we want to model.

Driver Aggressiveness of Response. Driver aggressiveness of response models The driver’s
immediate reaction to an alarm issued by the CMS is captured by the driver aggressiveness of response
factor. This is a multiplicative factor on the nominal driver response gain when an alarm sounds. In
 reality, the driver will revert to his nominal driving response a few seconds after he has reacted to the
alarm. Therefore, the multiplicative factor exponentially converges to 1 with a fixed time constant. This
time constant can also be varied. At this time, this feature comes into effect only when an alarm sounds

during driver disengagement.

Counter Measure System Effectiveness. RORSIM has also been modified to automatically log
countermeasure system effectiveness parameters such as maximum excursions of the tires and maximum
vehicle heading angles (relative to the road) before, during and ‘after driver disengagement, number of
warnings issued by the CMS and total time the alarm is operational. Algorithms have been included to

detect false alarms, correct detections and missed detections.
A.3 Input Parameters

RORSIM version 2.0 includes an expanded list of input parameters that can be varied automatically by
RORMCRUN. They are: '

1. Roadway curvature

2. Lane width

3. Tire/road friction coefficient

4. Tire/shoulder friction coefficient

5. Shoulder rolling resistance

6. Vehicle speed

7. Driver lane-keeping performance

8. Driver reaction time

9. Driver aggressiveness of response to an alarm
10. Initiation time of driver inattentiveness
11. Time duration of driver inattentiveness
12. CMS type (TTD or TLC) and threshold
13. CMS accuracy.
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Nine roadway designs have been provided with road radius of curvature varying from 250 ftto a
straight road. This feature is similar to that provided in Version 1.0 in that additional road designs must be
created if they are required for the study. RORSIM Version 2.0 does not provide an automatic feature that
creates the complete road design based on user input of road radius of curvature. In RORSTAT, the
distribution of vehicle speed is curvature dependent but the user can specify the curvature-vehicle speed
interdependence. This interdependence would then apply to all roadway designs.‘

The lane widths for rural and urban roadways usually vary from 9-12 ft. In this particular study,
only the 12 feet lanes were considered. The tire/road and tire shoulder friction coefficients allow the user
to simulate a wide range of road conditions varying from absolutely dry to icy road surface conditions.

The shoulder rolling resistance is a useful parameter especially for vehicle excursions on to the shoulder of
the road. | ' a

In addition to driver steering reaction time, the user now has the option of specifying nominal driver
lane keeping behavior as well as the aggressiveness of response to issued alarms. A well-characterized
driver model is important for studying run-off-the-road situations.

The addition of onset time of driver inattentiveness and time duration of driver inattentiveness gives
the user greater flexibility in trying to create a potential ROR situations for study. These two parameters

were fixed in Version 1.0.
A.4 Multiple Simulation Runs

The software was modified so that it could execute multiple runs autonomously. For example, in
the study described in this report, over 4,000 simulation runs were made using RORSIM with the desktop
computer unattended.

A shell program called RORMCRUN allows the user to perform multiple simulation runs by
specifying three input files. In each file, each line of data constitutes the input stream for executing one

run. The three files are-described below.

1. Baseline Parameter File - The first file contains values for parameters 1-9, described in the
previous section. The parameters define the baseline parameters required for simulation and
include road geometry, vehicle speed and driver characteristics input parameters. These
parameters must be specified for any run. .
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2. Driver Disengagement Parameter File - The second file contains driver disengagement time
parameters (parameters 10-11) and include time of onset of driver disengagement and duration
of driver disengagement. This data file is optional. When specified along with the Baseline
Parameter File, driver disengagement cases are simulated.

3. Countermeasure System Parameter File - The third file consists of CMS specific parameters
(parameters 12-13) such as the CMS threshold for warning and CMS sensor accuracy. This
data file is optional. When included, the Baseline Parameter and Driver Disengagement
Parameter Files must also be specified. This allows the user to simulate the effects of an active
countermeasure system.

These files can be generated using RORSTAT. Appendix B has an example of an input file generated by

RORSTAT. Please note that the last two columns are the Driver Disengagement Parameter Inputs.
A.S Input files generation

The user can exercise RORSIM version 2.0 in two ways:

1. Use RORMENU, specify the necessary input parameters and execute a single run.

2. Use RORSTAT to develop the three input files from the predefined set of distributions for
each parameter (described in the Section 2.3) and use RORMCRUN with RORSIM to execute
multiple runs.

RORSTAT uses the Latin Hypercube approach to generate input files for multiple runs.

The program RORSTAT for generating the random Latin hypercube vectors was written in Splus.
Splus is a statistical programming environment and a product of StatSci, a division of MathSoft, Inc.,
Seattle, Washington. Splus is available on a variety of computer platforms, including Windows 95 on a
personal computer.

At this.time the user has the freedom to vary distribution variables such as mean, variance or range
of any of the defined input parameters but cannot change the distribution itself. The parameters of the
input variable distributions are well documented in the program and can be modified by a user familiar
with the Splus environment. Each line of the input file represents a particular combination of the input

parameters and the entire file will be representative of the distributions defined for all the parameters.
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Appendix B

Input Parameters for Studies 1 and 2
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Appendix C

Distributions of Maximum Lateral
Excursion for Studies 1 and 2
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Figure C-1. Study 1 results: distributions of maximum tire excursion as a function of vehicle speed
for nine road segments - normal driving.
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Figure C-1. (Continued) Study 1 results: distributions of maximum tire excursion a function of
vehicle speed for nine road segments - normal driving.
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Figure C-1. (Continued) Study 1 results: distributions of maximum tire excursion as a function of
vehicle speed for nine road segments - normal driving.

C3



c c

K] o

2 [

= -3

g o 8 o

| |

© '

g = g -

© (3]

- -

E g «

3 -1

E E

g o 'g (=)

= = ,

0.10 0.20 0.30 0.10 0.20 0.30
Lane Keeping Perfomance Lane Keeping Perfomance
a) Right-Hand Curve - R=250 ft b) Left-Hand Curve - R=250 ft

c c

0 .9

e [

= o]

Q © Q ©

| ]

g < g <

5 g

g « E

= 3

£ E

é o (’6 o

= 2

0.10 0.20 0.30 0.10 0.20 0.30
Lane Keeping Perfomance Lane Keeping Perfomance
¢) Right-Hand Curve - R=500 ft d) Left-Hand Curve - R=500 ft

Figure C-2. Study 1 results: distributions of maximum tire excursion as a function of lane-keeping
performance for nine road segments - normal driving.
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Figure C-2. (Continued) Study 1 results: distributions of maximum tire excursion as a function of
lane-keeping performance for nine road segments - normal driving.
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Figure C-2. (Continued) Study 1 results: distributions of maximum tire excursion as a function of
lane-keeping performance for nine road segments - normal driving. :
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Figure C-3. Study 2 results: distributions of maximum tire excursion as a function of vehicle speed
for nine road segments - inattentive driving without a CMS.
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Figure C-3. (Continued) Study 2 results: distributions of maximum tire excursion as a function of
vehicle speed for nine road segments - inattentive driving without a CMS.
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Figure C-3. (Continued) Study 2 results: distributions of maximum tire excursion as a function of
vehicle speed for nine road segments - inattentive driving without a CMS.
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Figure C-4. Study 2 results: distributions of maximum tire excursion as a function of lane-keeping
performance for nine road segments - inattentive driving without a CMS.
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Figure C-4. (Continued) Study 2 results: distributions of maximum tire excursion as a function of
lane-keeping performance for nine road segments - inattentive driving without a CMS.
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Figure C-4. (Continued) Study 2 resulits: distﬁbuﬁons of maximum tire excursion as a function of
lane-keeping performance for nine road segments - inattentive driving without a CMS.
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